Exercise 7

Evaluate the line integral, where C is the given curve.

$$
\int_{C}(x+2 y) d x+x^{2} d y, \quad C \text { consists of line segments from }(0,0) \text { to }(2,1) \text { and from }(2,1) \text { to }(3,0)
$$

Solution

The equation of the line going through $(0,0)$ and $(2,1)$ is

$$
y=\frac{1}{2} x,
$$

and the equation of the line going through $(2,1)$ to $(3,0)$ is

$$
y=-x+3
$$

Rewrite the given integral using the dot product.

$$
\int_{C}(x+2 y) d x+x^{2} d y=\int_{C}\left\langle x+2 y, x^{2}\right\rangle \cdot\langle d x, d y\rangle
$$

To evaluate it, split it up over the two lines.

$$
\int_{C}(x+2 y) d x+x^{2} d y=\int_{\text {Line } 1}\left\langle x+2 y, x^{2}\right\rangle \cdot\langle d x, d y\rangle+\int_{\text {Line } 2}\left\langle x+2 y, x^{2}\right\rangle \cdot\langle d x, d y\rangle
$$

Parameterize the first line by $x=t$, which then means $y=t / 2$, with $0 \leq t \leq 2$. Parameterize the second line by $x=t$, which then means $y=-t+3$, with $2 \leq t \leq 3$.

$$
\begin{aligned}
\int_{C}(x+2 y) d x+x^{2} d y= & \int_{0}^{2}\left\langle x(t)+2 y(t),[x(t)]^{2}\right\rangle \cdot\left\langle\frac{d x}{d t}, \frac{d y}{d t}\right\rangle d t \\
& +\int_{2}^{3}\left\langle x(t)+2 y(t),[x(t)]^{2}\right\rangle \cdot\left\langle\frac{d x}{d t}, \frac{d y}{d t}\right\rangle d t \\
= & \int_{0}^{2}\left\langle t+2\left(\frac{t}{2}\right), t^{2}\right\rangle \cdot\left\langle 1, \frac{1}{2}\right\rangle d t \\
& +\int_{2}^{3}\left\langle t+2(-t+3), t^{2}\right\rangle \cdot\langle 1,-1\rangle d t \\
= & \int_{0}^{2}\left\langle 2 t, t^{2}\right\rangle \cdot\left\langle 1, \frac{1}{2}\right\rangle d t+\int_{2}^{3}\left\langle 6-t, t^{2}\right\rangle \cdot\langle 1,-1\rangle d t \\
= & \int_{0}^{2}\left(2 t+\frac{t^{2}}{2}\right) d t+\int_{2}^{3}\left[(6-t)-t^{2}\right] d t \\
= & \left(\frac{16}{3}\right)+\left(-\frac{17}{6}\right) \\
= & \frac{5}{2}
\end{aligned}
$$

